Imperfect transcritical and pitchfork bifurcations
نویسندگان
چکیده
منابع مشابه
Imperfect transcritical and pitchfork bifurcations ✩
Imperfect bifurcation phenomena are formulated in framework of analytical bifurcation theory on Banach spaces. In particular the perturbations of transcritical and pitchfork bifurcations at a simple eigenvalue are examined, and two-parameter unfoldings of singularities are rigorously established. Applications include semilinear elliptic equations, imperfect Euler buckling beam problem and pertu...
متن کاملPitchfork bifurcations of invariant manifolds
A pitchfork bifurcation of an (m − 1)-dimensional invariant submanifold of a dynamical system in Rm is defined analogous to that in R. Sufficient conditions for such a bifurcation to occur are stated and existence of the bifurcated manifolds is proved under the stated hypotheses. For discrete dynamical systems, the existence of locally attracting manifolds M+ and M−, after the bifurcation has t...
متن کاملA Remark on heteroclinic bifurcations Near Steady State/Pitchfork bifurcations
We consider a bifurcation that occurs in some two-dimensional vector fields, namely a codimension-one bifurcation in which there is simultaneously the creation of a pair of equilibria via a steady state bifurcation and the destruction of a large amplitude periodic orbit. We show that this phenomenon may occur in an unfolding of the saddle-node/pitchfork normal form equations, although not near ...
متن کاملTranscritical bifurcations in nonintegrable Hamiltonian systems.
We report on transcritical bifurcations of periodic orbits in nonintegrable two-dimensional Hamiltonian systems. We discuss their existence criteria and some of their properties using a recent mathematical description of transcritical bifurcations in families of symplectic maps. We then present numerical examples of transcritical bifurcations in a class of generalized Hénon-Heiles Hamiltonians ...
متن کاملImperfect homoclinic bifurcations.
Experimental observations of an almost symmetric electronic circuit show complicated sequences of bifurcations. These results are discussed in the light of a theory of imperfect global bifurcations. It is shown that much of the dynamics observed in the circuit can be understood by reference to imperfect homoclinic bifurcations without constructing an explicit mathematical model of the system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2007
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2007.06.015